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1 introduction

In recent years, deep learning (DL) has exploded in popularity [1]. An increasingly
obvious trend in DL research is the exponential growth of model sizes, as evidenced
by models like BERT [2] and GPT-3 [3]. Recently, specialized DL hardware accelerators
have also grown in popularity [4, 5, 6]. Consequently, new models often hit the
limits of physical memory, either across all presently-available hardware or in specific
memory-limited instances.

A popular approach to the memory problem is gradient checkpointing, which trades
memory for additional compute by recomputing intermediate activations (a classic
case of the space-time tradeoff). Checkpointing has the benefit of being semantics-
preserving, unlike other approaches such as quantization [7]. Originating in the
automatic differentiation community (AD), DL researchers have adapted the technique
and produced increasingly optimal algorithms for training deep learning models under
memory constraints. However, such approaches have assumed a static computation
graph in order to perform offline planning. With DL models and applications also
increasing in dynamism [8, 9, 10], these approaches cannot easily be applied.

Dynamic Tensor Rematerialization (DTR), a novel dynamic runtime technique for
reducing memory usage during the training of DL models, addresses this problem [11].
DTR replaces the offline checkpointing problem with an online one, taking inspiration
from caching, and operates as a thin runtime layer within a DL framework. Due to
DTR’s dynamic and embedded nature, implementations of it will invariably need to
deal with the low-level implementation details of modern DL frameworks. In the
case of PyTorch [12], this includes (but is not limited to) notions of aliasing, operator
signatures, statefulness, and liveness. The complex interactions present in production
DL systems can make debugging and designing implementations hard, which in turn
hinders the efficient development of higher-level abstract algorithms.

In this paper, we present simrd: a simulator for Dynamic Tensor Rematerialization.1

simrd bridges the gap between high-level algorithm design and low-level algorithm
implementation. Through simrd, we evaluate DTR’s theoretical performance by
simulating the execution of a variety of DL models, both with and without dynamism.
We additionally characterize the asymptotic computational overhead incurred by DTR,
through the simulation of a classic toy model used in the literature, and analyze
DTR’s behavior by examining the resulting execution traces. simrd enables quick and
efficient exploration of the algorithm design space, while capturing the core semantics
of a complex DL framework.

The paper is structured as follows: in Sec. 2, a high level overview of DTR
and its motivations is given; in Sec. 3, we motivate the need for a simulation; in
Sec. 4, we give a comprehensive exposition of simrd’s design, along with precise
formalizations of DTR’s heuristics and operation; in Sec. 5, we use simrd to investigate
the performance of DTR under various settings, across a variety of benchmarks; lastly,
we give concluding remarks in Sec. 6, and reflect on the benefits of having a simulation
during the research and development cycle.

1 simrd is pronounced like “simmered.”
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2 background : dynamic tensor rematerialization

In order to understand the importance of simrd, we give brief motivations for DTR,
along with a high-level summary of DTR’s operation and core heuristics.

2.1 Previous Work

As mentioned in the introduction, gradient checkpointing is a popular approach to
solving the memory problem in DL research. Originating in the AD community
[13, 14, 15], checkpointing works by freeing certain intermediate computations and
recomputing them as needed from “checkpointed” values during backpropagation
(see [16] for backpropagation, although the idea itself is even older). In DL research,
checkpointing exploits the fact that intermediate activations take up most of the used
memory during training [17].

In Chen et. al [18], the authors develop a simple checkpointing scheme for linear
DL models of n layers, which involves placing checkpoints evenly every

√
n layers.

This reduces the peak required memory to 2
√
n (assuming all layers have unit size),

while only requiring n additional computations. While this technique only works
for linear networks (which excludes models like ResNet [19]), the authors give a
greedy algorithm which works on general computation graphs (although without any
optimality guarantees).

The authors of [20] refine Chen’s algorithm by explicitly considering size and
computation time in their checkpointing scheme. In [21] and [22], the authors examine
the problem from a more graph-theoretic perspective, and make use of techniques from
graph theory to produce increasingly general and optimal solutions. Lastly, a recent
paper introduces Checkmate [23], which transforms scheduling into a constraint
solving problem, and uses an integer linear programming (ILP) solver to obtain
optimal schedules. Note that [21] and [23] rephrase the checkpointing problem as
tensor rematerialization, taking inspiration from register rematerialization [24].

2.2 Dynamic Tensor Rematerialization

While prior work on automatic gradient checkpointing (and subsequently, tensor
rematerialization) has been steadily improving in optimality, they have essentially
been limited to static models. In some cases, dynamic models such as RNNs can be
“unrolled” [25] into large static models which can then be tackled using static methods.
However, this is not generalizable; highly complex models like the Neuro-Symbolic
Concept Learner [9] cannot be “unrolled” in any sensible way. Lazily executing
dynamic models (in order to build a static computation graph) also fails in the case of
control flow which depends on computed values.

a dynamic approach . DTR approaches the problem from a fundamentally
dynamic perspective. In particular, DTR treats GPU memory as a large cache with a
high miss penalty; tensors can be evicted and cached by freeing their memory and
(re)computing them, respectively. When an operation needs more free memory than
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is available, DTR evicts tensors from memory until there is sufficient free space. On
the other hand, when an evicted tensor t is needed by an operation, t is recomputed.
Note that this recomputation may incur further recursive recomputations, if previous
dependencies are also evicted.

In this way, DTR builds up a computation graph while eagerly executing model
code, in the style of PyTorch [12]. Consequently, from the perspective of the algorithm,
arbitrary dynamism is indistinguishable from static model architecture. Algorithms 1

and 2 show the high-level operation of DTR.

eviction heuristic . At the core of DTR’s operation is an eviction heuristic h.
This heuristic assigns a value h(t) to each resident tensor t, representing (in some
approximate way) the cost to evict t. Whenever DTR needs to evict tensors, it
repeatedly evicts the lowest cost tensor determined using h. Importantly, h can factor
in arbitrary metadata such as tensor size or age, although these metadata must be
maintained by the runtime system.

fn PerformOp(op, [x1, . . . , xn], y) :=
Input: operator op, tensors x1, . . . , xn, destination tensor y
Result: stores y← op(x1, . . . , xn)
foreach x ∈ [x1, . . . , xn] do

if x is evicted then
PerformOp(x.op, x.op.inputs, x);

end
end
while insufficient memory do

Evict();
end
y← op(x1, . . . , xn);

Algorithm 1: PerformOp, which intercepts every operator call.

fn Evict() :=
Result: the cheapest resident tensor is evicted
let t∗ := arg minresident tensor t h(t);
deallocate t∗ and mark as evicted;

Algorithm 2: Evict, which frees memory as needed.

2.3 The hDTR heuristics.

As part of DTR’s design, the other authors and I proposed a class of related heuristics
called hDTR. At a high level, the hDTR heuristics formalize the notion of the “cheapest
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to compute, least likely to be needed, and largest” tensor. To capture these three
properties, hDTR is defined parametrically as

hDTR(s,m, c)(t) :=
c(t)

m(t) · s(t)
,

where s,m, c are measures of tensor staleness, size, and compute cost respectively.
Each measure can be naturally defined in terms of per-tensor metadata such as last

access time, memory buffer size, and operator compute time respectively. However,
there is a far more precise notion of compute cost which is highly nonlocal. It follows
from the following observation: for an evicted tensor t, the total compute cost incurred
by rematerializing t is at least the sum of the operator compute times for all the evicted
tensors which t recursively depends on, in the sense of the recursion in Algorithm 1. This
global structural knowledge is absolutely critical in preventing long chains of evicted
tensor dependencies, and is the core insight which makes simple static checkpointing
schemes work (such as in Chen’s

√
n scheme [18]).

For this reason, we introduced the notion of the evicted neighborhood e∗(t) of a given
tensor t. Intuitively, this is the set of evicted tensors which t recursively depends on
(as above), together with those evicted tensors which recursively depend on t. We
also introduced an undirected relaxation ẽ∗ of e∗, which incurs lower maintenance
overhead. Both of these constructions will be formally defined in Sec. 4.2. With these,
the observation above is effectively captured, which leads to three main variants of
hDTR:

DTR-Full(t) :=
c(t) +

∑
u∈e∗(t) c(u)

m(t) · s(t)
, DTR-EqClass(t) :=

c(t) +
∑
u∈ẽ∗(t) c(u)

m(t) · s(t)
,

DTR-Local(t) :=
c(t)

m(t) · s(t)
.

DTR-Local can be thought of as the naive (but low-maintenance) baseline variant. In
all cases, s,m, c are approximated using per-tensor metadata as above.

3 why simulate?

While it may be tempting to immediately begin prototyping DTR within a DL frame-
work, this approach has several pitfalls from both a research and engineering perspec-
tive.

3.1 Specification Incompleteness

The description of DTR given in Sec. 2.2 and algorithms 1 and 2 is, in some sense,
complete. It gives all that is needed to get started on implementing DTR in a real DL
framework. However, subtleties quickly appear when we think concretely about how
to proceed. For example, what happens when one input to an operation gets evicted
while we are rematerializing another? This is clearly a situation that shouldn’t happen,
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so we need to introduce some notion of locking. Similarly, we need to consider what
happens when no more resident tensors can be evicted.

Additionally, does the order in which we rematerialize arguments matter? Since
evictions are performed on-demand, the specific sequence of queued recomputations
directly affects the peak memory required and the incurred computational overhead.
This is a hidden “hyperparameter” of the algorithm which may be easily missed
during implementation. Other hyperparameters might only become evident deep into
the implementation process, at which point their effects on the system as a whole may
be hard to gauge.

3.2 Implementation Complexity

Digging into a DL framework exposes further problems that go beyond specification
incompleteness. For example in PyTorch [12], operators are functions from tensors
to tensors, not just a single output tensor. These operators cannot be decoupled into
sub-operators for each output tensor, so rematerializing one output causes the rest to
be rematerialized as well. On a more representational level, PyTorch has a notion of
aliasing that goes beyond the language-level. For example, the transpose of a matrix
tensor in PyTorch refers to the same underlying memory as the original tensor. It is
unclear what “evicting the transpose” would (or should) mean in this case. Each tensor
is also reference-counted and freed when all references are lost; this interaction must
be carefully handled by DTR to prevent memory leaks and performance degradation.
These problems represent a fundamental mismatch between DTR’s (implicit) model
and the reality of a DL system.

Further complexities include in-place operators (which mutate tensor data), non-
rematerializable tensors such as inputs and weights, and specific state invariants
which the codebase assumes (either explicitly or implicitly). Large-scale interactions
within the PyTorch codebase can also be subtle, as evidenced by the intricate design
of PyTorch’s automatic differentiation subsystem [26], which had to deal with many
of the above complexities.

3.3 Theory and Practice

From a research perspective, devoting significant amounts of time and energy into
the low-level implementation of an algorithm, without having analyzed it beforehand,
presents a non-negligible risk. In the best case, the algorithm performs well, which
could motivate further theoretical analysis backed up by empirical results. However,
in the worst (or perhaps even “average”) case, empirical results of the algorithm may
simply be bad. In this case, not only must a decision be made as to whether or not
the research should be continued, there is also considerable uncertainty about why
the algorithm failed to perform. If the research continues, even more time must be
invested in profiling the algorithm in situ to identify the reasons for the failure. This
requires a careful analysis of both the underlying DL framework and the behavior
of the core algorithm. Alternatively, if the research is discontinued, the researchers
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may forever be plagued with the possibility that the idea was indeed good, but the
execution subpar.

Regardless of the outcome, in the DL memory-efficiency literature, analytical
bounds of algorithmic performance are extremely common (and even expected) [18,
21, 22, 20, 23, 27]. It stands to reason that an effective presentation of DTR should
likewise include an analysis of its theoretical performance; indeed, this is simply
good research practice and etiquette. Given this precondition, there is little benefit to
diving into implementation first, before a theoretical analysis is performed. Obtaining
good theoretical bounds on the algorithm allows for more time to be spent on specific
implementation optimizations, while a negative result can help move research in more
promising directions.

3.4 Simulations in the Literature

Simulations have also been used in prior DL memory savings research to investigate
the performance of proposed algorithms. In [27], the authors design algorithms for
memory-efficiently training RNNs using backpropagation through time (BPTT). To
evaluate their algorithm designs, they simulate them under various conditions, and in
some cases compare the simulations to real implementation results. These simulations
were also used in the proof of an analytical bound, providing evidence by numerically
checking large inputs.

In the case of DTR, a simulator can be further thought of as a static instantiation of
the algorithm. By feeding the simulator a static computation graph extracted from a
DL framework (with an associated cost model), we can use the resulting execution
schedule as a statically planned checkpointing scheme. Note that both [20] and [23]
obtain approximate costs of tensor operations by first running each operation using
random inputs and recording the time; this can be directly compared to our PyTorch
logging approach (see Sec. 4.6).

4 simulator design

To address the problems raised in Sec. 3, a simulator for DTR thus needs to:

1. sufficiently model the core semantics of the underlying DL system,

2. provide a complete specification of DTR, and

3. enable efficient exploration of the algorithm design space.

Since DTR’s emphasis is on dynamic models, we chose to target the PyTorch DL
framework [12]. PyTorch executes model code eagerly (e.g. relying on the Python
interpreter), as opposed to building a static computation graph using an embedded
DSL (which is popular in frameworks like TensorFlow [28]). As a consequence,
PyTorch supports arbitrary (Python) control flow, which has enabled the design and
implementation of models with highly complex dynamism such as the Neuro-Symbolic
Concept Learner [18]. In this section, we show how simrd’s design satisfies these three
key requirements.
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4.1 Fundamental Abstractions

To match the core semantics of PyTorch, simrd needs to complicate the simple descrip-
tion of DTR given in Sec. 2.2. More specifically, simrd models PyTorch’s tensor-storage
distinction, in which each tensor object is a particular view of an underlying memory
buffer called a storage. A view can be thought of as metadata which gives structure
to raw memory, by encoding how it should be accessed. This allows PyTorch to
replace certain (usually) costly “tensor” operations with metadata operations. For
example, transposing a matrix in PyTorch does not require the memory to be copied
and reordered, but is instead a cheap metadata operation. The following abstractions
capture this behavior.

storage . At its core, DTR is a runtime system for reducing memory usage. As
such, storages (i.e., buffers of memory) are the underlying unit which DTR operates on.
Each storage S supports the following operations:

• size(S) : N, the size of S in bytes.

• root(S) : Tensor, the tensor whose parent operation computes the contents of S
(there is exactly 1 for each storage).

• tensors(S) : List[Tensor], all tensors which view the S.

• resident(S) : bool, true iff S is in memory.

• locks(S) : N, the number of locks on S held by DTR. S is locked once for each
pending rematerialization that requires it, and released once for each completed
rematerialization. This prevents the eviction problem mentioned in Sec. 3.

• refs(S) : N: the number of external references to S, i.e., those held by user code.
This models the reference counting mechanic employed by PyTorch.

Note that a storage S is evictable if and only if resident(S)∧ locks(S) = 0. When a
storage S loses all external references (i.e., when refs(S) = 0), PyTorch permanently
frees it from memory since it is no longer accessible by the source program. We call
this behavior banishing as opposed to eviction, and describe how it can be modeled by
simrd in Sec. 4.4.

tensor . Each tensor t supports the following operations:

• storage(t) : Storage, the storage viewed by t. Note that t is an alias (denoted
alias(t)) if and only if t 6= root(storage(t)).

• op(t) : Op, the parent operation which computes t (i.e., the view metadata), along
with its underlying storage if and only if ¬alias(t).

• refs(t) : N, the number of external references to t. Note that for each storage S
we have refs(S) =

∑
t∈tensors(S) refs(t).

• size(t) : N, the size of t, defined as 0 if alias(t) and size(storage(t)) otherwise.
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• defined(t) : bool, true if and only if op(t) has been performed after the last time
storage(t) was evicted. Note ¬alias(t) =⇒ (defined(t) ⇐⇒ resident(storage(t))).

A tensor t can be used in a computation if and only if defined(t); this notion of
definedness models the assumption that evicting a storage S destroys all tensor
objects which view S. In principle, it may be possible in PyTorch to keep the tensor
objects (since they’re just metadata) while evicting storages, but this could heavily
increase code complexity due to internal invariants which assume non-null storages.
Regardless, this can be changed easily to better model a given DTR implementation.

operator . We assume operators have type List[Tensor]→ List[Tensor], and that
they are pure in their arguments (i.e., do not depend on any other external state). Each
operator op supports the following operations:

• cost(op) : N, the compute cost of op.

• inputs(op) : List[Tensor], the input tensors to op.

• outputs(op) : List[Tensor], the output tensors to op.

simrd can, however, support mutating operations: see Sec. 4.6 for details.

4.2 Formal Metadata Definitions

While our abstract description of DTR in Sec. 2 is over tensors, simrd operates over
storages rather than tensors. Thus, we must correctly and completely define the
metadata our heuristics use over storages, providing notions of cost, staleness, and
data dependencies for storages rather than for tensors.

cost. For a given storage S, we define the compute cost of S as

cost(S) :=
∑

t∈tensors(S)

cost(op(t)).

This is a worst-case estimation: it represents the compute cost which is incurred when
every tensor view of S needs to be rematerialized. An alternative definition is simply
cost(op(root(S))), which may be acceptable as aliasing operations are typically much
cheaper than non-aliasing.

staleness . We estimate the staleness of S by tracking the last access time of each
t ∈ tensors(S). The last access time last_access(t) is defined as the most recent time
when t was referenced by a queued operation. Naturally, we define last_access(S) =
maxt∈tensors(S) last_access(t). Staleness, given the current time T, is then defined as
staleT(S) := T − last_access(S).

data dependencies . The dependencies of S are the set of storages

deps(S) := {storage(u) | ∃t. t ∈ tensors(S)∧ u ∈ inputs(op(t))} \ {S}.
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Note that we exclude S since it is not a true dependency (each alias tensor in tensors(S)
technically “depends” on S). Another possible approximation of the above is to simply
take the dependencies of root(S); although this ignores potential dependencies of
aliasing operations, it is precise if all aliasing operations only depend on S.

We now define the dependents of S as the set deps>(S) consisting of all T with
S ∈ deps(T). With this definition, DTR can operate over the dependency graph (V ,E)
where V is the set of storages and (S, T) ∈ E iff S ∈ deps(T). Note that (V ,E) is
implicitly indexed by time T, with V being the set of at-least-once computed storages
at T and E being the dependency relations at T. Note that V excludes all banished
tensors.

evicted neighborhood. The evicted neighborhood e∗, as introduced in Sec. 2.3,
works without modification over the storage dependency graph. We now give a formal
definition. Let depse(S) be the evicted subset of deps(S), and likewise for deps>e (S).
Now, let De and D>e be the transitive closures of the relations

{(T ,S) | T ∈ depse(S)} and {(S, T) | T ∈ deps>e (S)},

respectively. Then, e∗(S) := {T | (T ,S) ∈ De}∪ {T | (S, T) ∈ D>e }. Intuitively, e∗(S) is the
set of evicted storages that must be resident to compute all t ∈ tensors(S), together
with the set of evicted storages T that need S to be resident before all t ∈ tensors(T)
can be computed.

relaxed (eqclass) evicted neighborhood. Actually tracking e∗(S) can be
computationally expensive due to the directed and changing nature of the graph.
For each S, e∗(S) depends on its specific ancestors and descendants; there does not
appear to be a simple way of maintaining a single global data structure to track
this information as tensors are evicted and rematerialized. A solution will likely
involve a dynamic graph connectivity data structure, which would greatly increase
the complexity of simrd’s implementation.

We approach this problem by relaxing the definition of the evicted neighborhood.
At a high level, our solution works as follows: given a storage dependency graph
G = (V ,E), we first forget edge directions to obtain the undirected dependency graph
G̃. Now, let G̃e be the subgraph obtained by removing all resident storages (and any
edges including them). Each connected component of G̃e is then an evicted component,
with each evicted T ∈ V belonging to exactly one component ε∗(T). Then, the (relaxed)
evicted neighborhood for a resident storage S is defined as

ẽ∗(S) :=

 ⋃
T∈depse(S)

ε∗(T)

∪
 ⋃
T∈deps>e (S)

ε∗(T)

 .

Note the structural similarity in this definition with e∗(T); they are indeed similar, but
ẽ∗(S) overapproximates the neighborhood by ignoring edge directions. Each evicted
component can be efficiently represented using a Union-Find (or disjoint-set) data
structure with very good asymptotic complexity for merging and obtaining static set
metadata. In the case of DTR, each component tracks the sum of the compute costs of
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its elements (with the union of two components having the sum of each constituent
cost). This enables very cheap querying of compute costs over ẽ∗(S).

However, despite this optimization, splitting is not a supported operation on
disjoint-sets.2 Approaches to splitting would also need to recover the original compute
costs of each set, which may require traversing the whole set if done naively. Un-
forunately, DTR regularly splits evicted components during rematerialization. In order
to deal with this, we use the following overapproximation: when a (previously) evicted
storage S belonging to ε∗(S) is rematerialized, we set ε∗(S).cost := ε∗(S).cost − cost(S).
While resident storages thus never count towards the compute cost of a component,
“phantom connections” between evicted storages may accumulate over time (likely
depending on the connectedness of the underlying dependency graph). Despite this
limitation, this approximation worked well in practice, as shown in Sec. 5.3.

4.3 Formal Heuristic Definitions

Having defined the metadata above, we can now formally define the hDTR variants
mentioned in Sec. 2.3. (Recall that hDTR heuristics compute a score using measures of
size, computational cost, and staleness and evict the tensor with the smallest score,
corresponding to the intuition that the tensor evicted should be large, unlikely to be
rematerialized, and cheap to rematerialize if it does need to be rematerialized.)

DTR-Full(S) :=
cost(S) +

∑
T∈e∗(S) cost(T)

size(S) · staleT(S)
,

DTR-EqClass(S) :=
cost(S) +

∑
T∈ẽ∗(S) cost(T)

size(S) · staleT(S)
≈ cost(S) + cost∗ε(S)

size(S) · staleT(S)
,

DTR-Local(S) :=
cost(S)

size(S) · staleT(S)
.

Note that simrd’s implementation of DTR-EqClass uses the splitting approximation
described above, with ẽ∗(S) depending on the specific sequence of evictions and
rematerializations. cost∗ε(S) in the second expression represents this statefulness as a
sum over the stateful neighboring ε∗ costs.

baseline heuristics . For completeness, we define a few “baseline” heuristics
that are intuitive and have been used in prior work:

LRU(S) :=
1

staleT(S)
, Largest(S) :=

1

size(S)
, Random(S) := X ∼ U(0, 1).

The LRU (least recently used) heuristic is a common cache eviction policy [29], while
Largest is similar to GreedyRemat from [21].

2 This can be seen as a variant of the Union-Find-Split problem, which typically requires the use of more
complex data structures such as link-cut trees.
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4.4 Implementation Details

runtime state . In what follows, we denote the collective runtime state of simrd
as R, and use the dot notation to indicate stateful reads and writes of runtime values.
Specifically, simrd tracks the following runtime state:

• R.h : (Storage, Metadata)→ R, the eviction heuristic, interpreted as an eviction
cost (the lowest-cost storage is evicted). We write R.h(S) for convenience, when
the choice of metadata can be inferred from the heuristic.

• R.budget : N, the memory budget in bytes.

• R.memory : N, the current memory usage in bytes.

• R.T : N, the current clock time in some unit of granularity, such as nanoseconds.

• R.pool : List[Storage], list of all currently evictable storages.

eviction and banishing . To evict a given storage S, we set all tensors in S
to be undefined, remove S from the pool, and decrease R.memory by size(S). Cached
metadata are also updated as necessary.

Banishing, which is permanent eviction, is slightly more subtle; in particular, it can
only be done for S when deps>e (S) = ∅. Banishing then proceeds by evicting S as above,
but with the additional effect of removing S entirely from the dependency graph. Each
T ∈ deps>(S) is then locked (and effectively becomes an non-rematerializable constant).
Storages locked in this way are said to be pinned (and have a special flag in simrd), to
distinguish them from those locked during rematerialization, and we permit them to
be banished in the future. Note that banishing can be performed on evicted S when
the above condition is met, in which case the eviction is skipped.

(re)materialization. When a tensor t is to be (re)materialized, its parents’
storages are first locked by incrementing the lock count (so that they don’t get evicted
while they are still needed) and undefined parents are recursively rematerialized.
We fix a rematerialization order based on tensor identifiers, which are unique and
monotonically increasing.3 We then increment R.memory by

∑
u∈outputs(op(t)) size(u)

(performing evictions as necessary), and move R.T forward by cost(op(t)). Multi-
output operations must be handled carefully so as to not leak memory: we make
sure to decrease R.memory by size(u ′) for each u ′ ∈ outputs(op(t)) that was defined prior
to the rematerialization. This models the immediate freeing of doubly-computed
ephemeral tensors in the PyTorch implementation. Lastly, locks on parent storages
are freed and unlocked storages (including any newly rematerialized ones) are added
back into R.pool.

constants . simrd models non-rematerializable constants like weights and inputs
by creating dummy “constant” tensors using nullary operators with 0 cost and pinning
the resulting storage. This allows simrd to have a full picture of the computation

3 Different orderings, such as by tensor size, are possible but left to future work.
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graph. Furthermore, log-accurate banishing (which can free pinned memory) requires
knowledge of constants, as PyTorch reference-counts constants.

4.5 Additional Runtime Optimizations

eager eviction. When the final external reference to a storage S is lost, we know
that the underlying DL framework would have reclaimed the memory used by S. To
utilize this information as opposed to doing nothing, we can either banish S or simply
evict S normally. When banishing, must first check that S has no evicted dependents;
if it does, then we retry banishing each time a dependent is rematerialized. Banishing
has the ability to evict constants, but at the downside of pinning potentially exploding
amounts of memory. The alternative (eager eviction) is easier to implement and simply
involves evicting S normally (if possible). This prevents the problem of over-pinning
memory, but with the downside that constants can never be evicted. In practice, eager
evictions allowed us to save more memory (see Sec. 5.4 for details).

caching metadata . To avoid costly recomputations of metadata during heuristic
evaluations, we cache the local cost cost(S) for each S (as it only changes when new
aliases are made). Additionally, for the DTR-Full heuristic, we avoid recomputing
e∗(S) at each evaluation by caching and only recomputing after evictions or rema-
terializations that directly affect e∗(S). Such recomputations are further optimized
by tracking the evicted ancestors and descendants separately (allowing them to be
recomputed independently, depending on the position of the affected storage).

4.6 Log-Replaying Mechanism

log format. We logged PyTorch operations as a sequence of abstract instructions
corresponding to the semantics of the actions we were easily able to instrument
in the framework. Every PyTorch tensor is given a unique identifier string upon
creation, which is recorded and used in the log. In this section, each PyTorch tensor t
corresponds to a simulator tensor JtK.

The log contains the following instructions:

• MEMORY(t, size): logs that t uses size memory; treated as 0 if alias(JtK).

• ALIAS(to, ti): logs that JtoK is an alias of JtiK, i.e., two different views of the same
storage. ti can either be a tensor identifier or ⊥; if ti = ⊥, then to does not alias
another tensor (to’s parent operation created its storage).

• CALL(inputs, outputs, cost, op): logs the operator call outputs = op(inputs) with
compute cost cost. This instruction is followed by |outputs| MEMORY and ALIAS

instructions to log information about each output. Each CALL corresponds to a
simulator operator JopK with inputs {JiK | i ∈ inputs} and new simulator tensor
outputs {JoK | o ∈ outputs}.

• MUTATE(inputs, inputs ′, cost, op): logs the in-place (mutating) operator call op(inputs)
with compute cost cost, which modifies inputs ′ ⊆ inputs.
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• CONSTANT(t): logs that JtK is a constant, and is followed by a MEMORY instruction.

• COPY(to, ti): logs a new identifier to with JtoK = JtiK. This increments refs(JtiK).
This happens when Python code like “x = y” is called where y is a PyTorch
tensor and x is a fresh variable; this action neither creates a new storage nor a
new view but only has x point to the same view as y.

• COPYFROM(to, ti): logs the PyTorch code to = ti where each side is an existing
tensor. This decrements refs(JtoK), increments refs(JtiK), and updates JtoK 7→ JtiK.
Intuitively, this corresponds to Python code like “x = y” where y is a PyTorch
tensor and x was already assigned to a PyTorch tensor; in PyTorch, x is mutated
to match y.

• RELEASE(t): logs the destructor of the PyTorch tensor t. This decrements refs(JtK).

supporting mutation. To support mutation from in-place operators, simrd adds
a “reference layer” that mutates cloned tensors, allowing for a uniform interface for
all operators. Given a mutation instruction MUTATE(inputs, inputs ′, cost, op), let inew be a
new unique identifier for each i ∈ inputs ′, and let inputs ′new = {inew | i ∈ inputs ′}. We
then proceed by treating op as a pure operator from inputs to inputs ′new, where each
newly created simulated tensor JinewK is non-aliasing and has size size(storage(JiK)).
Lastly, we decrement refs(JiK) and update the mapping JiK 7→ JinewK. Intuitively, we
are modeling the transformation

op(t) Tensor t ′ = copy(t); op(t ′); t = t ′.

Note that in a naive PyTorch implementation of DTR, a mutation of i may produce
incorrect results when JiK is an alias, since the mutation layer would create a clone but
aliases would still point to the old storage. Potential solutions in real implementations
would be to propagate the above transformation to all aliases of a storage (costly) or
to mutate storage pointers (which may lead to significantly increased implementation
complexity).

output condition. All live tensors at the end of a log (i.e., all t with refs(t) > 0)
are treated as outputs which the users want (i.e., gradients, loss, prediction). They are
thus rematerialized (if not defined) and locked to ensure they persist. This prevents
simrd from incorrectly reporting better results by evicting computed weight gradients
and never rematerializing them. This permits the user to perform the weight update
step outside of DTR immediately after the backward pass ends.

5 evaluation

Now that we have a formal specification of DTR, along with several potential heuristics,
we can evaluate its performance in various scenarios using various metrics. In this
section, we characterize the performance of DTR in both in an asymptotic sense
and in a practical, real-world context. We find that DTR can attain asymptotically
optimal performance, while also producing schedules on real models with excellent
computational overhead.
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5.1 Asymptotic Performance

problem definition. To characterize the asymptotic performance of DTR under
the hDTR variants, we adopt a theoretical setup which models Chen et. al’s analysis
[18]. Figure 1 shows the computation graph of the toy model we consider; each ti

t1 t2 t3 tn−2 tn−1 tn

t̂1 t̂2 t̂3 t̂n−2 t̂n−1 t̂n

. . .

. . .

Figure 1: A simple linear, feed-forward network model and its associated gradient graph.

represents the ith layer in the network, and t̂i the corresponding gradient. As in [18],
we assume all tensors have unit size and compute cost, and that there is no aliasing.
Note that we omit constants from the graph, since they do not affect asymptotic
performance.

We then wish to answer the following: how many additional computations does
DTR perform, for an n layer network given a budget B and an eviction heuristic h?
Plotting the additional computations versus n thus gives a characterization of DTR’s
asymptotic performance.

experimental setup. We examined the DTR-Full and LRU heuristics under
B = d2

√
ne and B = dlog2 ne, for an exponentially spaced set of n up to 213. To

exploit liveness information (which Chen’s analysis also incorporates), we utilized the
banishing mechanic mentioned in Sec. 4.5, with reference counting and computation
order extracted from the pseudocode program in Algorithm 3 (ignoring edge cases at
the index boundaries).

let ts := [];
forall i ∈ [1, . . . ,n] do
ts.append(new ti using ti−1);

end
let g := t̂n using ts[n− 1];
forall j ∈ [1, . . . ,n] do
ts.pop();
g := t̂n−j using ts[n− j− 1] and g;

end

Algorithm 3: The program whose reference counts is used for liveness information.

results . The results are shown in Figures 2 and 3. For the d2
√
ne budget, we

plotted the theoretical performance of Chen’s approach as a baseline comparison.
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Figure 2: Additional computations vs. number of layers n, for B = d2
√
ne.

Amazingly, the DTR-Full heuristic appears to match Chen’s theoretical overhead
almost exactly, at approximately n additional computations for a network of n layers.
The simple LRU heuristic, while performing noticeably worse, also seems to be linear
(which matches Chen’s result, asymptotically). This result is highly encouraging, as
it suggests that DTR can produce not only asymptotically optimal, but truly near
optimal solutions without having any prior knowledge of the model.

The results in Figure 3 is also very encouraging: the computational overhead of
DTR under both heuristics appears to grow like n logn under a Ω(logn) budget,
which matches asymptotically a secondary result in Chen et. al.

5.2 Algorithmic Behavior

experimental setup. As shown in Sec. 5.1, DTR performs surprisingly well
in terms of asymptotic overhead when using certain heuristics (ignoring runtime
overhead). The specific behavior of DTR which enables this, however, cannot be deter-
mined from the performance graph. To address this opacity, we trace DTR’s execution
on this toy model by logging storage allocations and deallocations. From this data, we
can reconstruct the state of memory at each timestep during the execution. Thanks to
the simple linear forward-backward structure of the toy model, we can arrange each
memory state as a column of cells which are either filled or empty (corresponding
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Figure 3: Additional computations vs. number of layers n, for B = dlog2 ne.

to allocated and deallocated, respectively), with increasing y corresponding to later
computations in the network. Then, placing the columns from left to right allows us
to quickly visually inspect the execution. Each row then represents the memory state
of a single tensor across time.

We perform this tracing for the toy model with n = 101 and the budget/heuristic
combinations from Sec. 5.1. In each resulting trace, the brighter cells represent the
corresponding gradient tensor of the forward tensor indicated by the row.

results . The memory traces are shown in Figures 7, 8, 9, 10. As the traces
show, the DTR-Full heuristic has an intricate recursive substructure, while the LRU

heuristic has more completely filled, “boxy” regions. This is a direct consequence
of the global vs. local information available to the heuristics, respectively. The LRU

heuristic does not “know” how to space the checkpoints as effectively as DTR-Full,
which spaces the checkpoints (horizontal lines) more evenly, preventing long chains of
rematerializations.

5.3 PyTorch Log Performance

experimental setup. We ran simrd on logs generated from a variety of models.
Specifically, we chose three static vision models [19, 30, 31] investigated in previous
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work [23] and three dynamic models [32, 8, 33] that exhibit different kinds of control
flow. The vision models were run on batches of 32 with 3-channel images (size 32× 32
for ResNet and DenseNet, 512× 512 for UNet); LSTM ran on a sequence of length 32,
with 10× 100 entries; and TreeLSTM ran on a binary tree of depth 6, with 32× 100
entries. The logs used for our simulated evaluation were produced by running each
model 50 times on a single input on a machine with an NVidia Titan V GPU (CUDA
10.1, CuDNN 7.6.4) and a 16-core AMD Ryzen Threadripper 1950X on Ubuntu 18.04,
using the final “warmed-up” log. The logged portion includes executing the forward
pass, computing the loss, and performing the backward pass.

For all simulations, we considered a heuristic to be thrashing if it required at least
3× the amount of computation before finishing, since we assume this to be due to
long chains of unfavorable rematerializations and unviable in practice.
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Figure 4: Simulated results comparing different heuristics on various models, comparing
rate of computational slowdown for different budgets (fractions of the original peak memory
usage). The black area in each graph corresponds to the memory required to store inputs
and weights, while the gray area denotes the single operator requiring the most memory to
be live at once. The dashed and dotted lines represent the last ratio before thrashing and
out-of-memory errors, respectively.

results . For all the models in Figure 4, our simulations show significant savings
at reasonable compute overheads. While we were unable to implement existing static
checkpointing schemes as baselines due to the complexity of aliasing and mutation
(especially in the dynamic models), we note that these results save similar amounts
of memory compared to expert manual modifications to models. For example, a
manually optimized DenseNet-BC model [34] achieved 56.1% memory consumption at
a 25.5% slowdown, while our simulated trial using DTR-EqClass yields 20.0% memory
consumption at 22.7% overhead. Although these numbers are not directly comparable
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since the simulation does not include the dynamic analysis overhead,4 they illustrate
that DTR (with suitable heuristics) can achieve memory-computation tradeoffs that
otherwise justify intervention by an expert. Furthermore, unlike existing static ap-
proaches, DTR automatically saves memory on models with arbitrary dynamism,
though it began to thrash at lower budgets for LSTM and TreeLSTM. In all cases,
the results show that more complex heuristics achieve better memory savings with
lower operator overhead, though these complex heuristics also introduce more runtime
overhead, which must be considered in implementations of DTR. Notably, even the
least sophisticated heuristics like LRU (requiring very little runtime overhead) achieved
memory savings of up to 30% with very little overhead before thrashing, indicating
that some memory savings from checkpointing can be readily obtained. See Sec. 5.5
for a more detailed analysis of runtime overhead.

limitations . We encountered several illustrative failure modes for DTR in com-
mon public implementations of DL models. In PyTorch’s official language model
examples [35] and with a popular TreeLSTM implementation [36], a single bottleneck
(which turned out to be an encoder or embedding) used over 50% of the baseline
memory (not including inputs and weights). Obtaining memory savings in such
cases is difficult, as DTR needs to compute the bottleneck while still maintaining an
effective checkpointing structure. Notably, a manual PyTorch checkpointing imple-
mentation [37] was able to save memory on the language models by splitting the
embedding to avoid this bottleneck. We implemented our own versions of these
models (closely following the original papers) without such bottlenecks in order to
capture the essence of the models’ dynamic structures. These issues would arise in
any automatic checkpointing scheme, illustrating that the design of a DL model is a
very relevant factor in the applicability of checkpointing techniques.

hDTR ablation study. First, we will analyze the three sources of information
(metadata) for the hDTR heuristic. Recall that hDTR(s,m, c)(t) = c(t)/[m(t) · s(t)],
where s is a measure of staleness, m is a measure of size, and c is a measure of
compute cost. For this study, we take s and m to be the staleness and size functions
defined in Sec. 4. For compute cost c, we compare the following alternatives (see Sec.
4 for definitions): the full e∗, the approximation ẽ∗, and the local cost. We allow each
measure to be entirely ablated (e.g., s(t) = 1, which we denote s = no). Note that as
discussed previously, the heuristic has been lifted to operator over storages.

In figures 11, 12, 13, 14, we have s,m ∈ {yes, no} and c ∈ {e∗,EqClass, local, no}.
Each figure fixes a choice of c, varying s and m. The general trend shown the figures
is that higher metadata complexity (corresponding to more precise notions of the
evicted neighborhood) enables more savings, while staleness and size are required
for acceptable computational overhead. It is interesting to note that the importance of
staleness and size is dependent on the specific model architecture. For example, cost
and size alone does far better than cost and staleness for the static models (DenseNet,
ResNet, UNet), whereas the opposite is true for the dynamic models. This may be
due to model depth or the distribution of tensor sizes, or to the increasing impact

4 In theory, we could extract the schedule from the simulator, and consider this an instance of static
checkpointing.
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of individual checkpoints at lower budgets; further research may shed more light
on the influence of model-specific characteristics like these. Additionally, we may
note that the ẽ∗ approximate cost performs comparably to the e∗ exact cost while
requiring less information, validating our belief that the evicted components are a
useful approximation (and that the stateful splitting optimization does not impact
performance severely).

5.4 Banishing and Eager Eviction

experimental setup. For this experiment, we compared the DTR-Full heuristic
with banishing (permanent removal) against that with eager evictions, as described in
Sec. 4.5. We only used the e∗ cost because it performed much better than local cost,
and because it would have been more complicated to update the definition of ẽ∗ to
account for banished neighbors. The same PyTorch logs as in Sec. 5.3 were used, with
a thrashing limit of 5× overhead.
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Figure 5: Results for the DTR-Full heuristic, comparing banishing and eager evictions.

results . As the curves in Figure 5 show, banishing is unable to achieve the same
level of savings across most models tested as eager eviction. For UNet, the difference
is large: banishing can only save 10% memory (and OOMs at 0.8 ratio), while eager
eviction allows for 50% savings. However, banishing still achieves decent savings on
most models, even obtaining better computational overhead under the same budget
and savings for ResNet. Since banishing potentially allows for greatly lowered runtime
overhead, implementations of DTR can consider conditionally enabling it in situations
where the tradeoff is more desirable.
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5.5 Estimating Runtime Overhead

The biggest weakness of the preceding experiments has been the lack of runtime
overhead analysis. More precisely, while DTR may be able to achieve impressively
low computational slowdown, such results are weakened if DTR’s runtime overhead
(maintaining tensor metadata, finding the cheapest tensor to evict, etc.) scale extremely
poorly. In the case of static models, we can treat the simulator as an offline solver
by extracting an execution schedule; however, this is clearly infeasible for dynamic
models, for the same reason as existing checkpointing approaches. In this experiment,
we estimate the runtime overhead of DTR using the robust metric of storage accesses
during an execution, as will be described below.

experimental setup. We used the same PyTorch logs as in Sec. 5.3, and compared
the main three hDTR variations: DTR-Full, DTR-EqClass, DTR-Local. Intuitively, we
should expect these three variants to reside in different overhead complexity classes,
as a consequence of their metadata complexity and maintenance costs.

For this experiment, we tracked the number of storage accesses made during evalua-
tions of heuristics and maintenance of metadata. We chose this metric over wall-clock
time, since our Python implementation of simrd is not heavily optimized and could
potentially fail to reflect the real performance of the algorithm. Storage accesses, on the
other hand, do reflect operations that would be performed by a real implementation.
For the DTR-Full heuristic, this included each storage visited during the updating and
rebuilding procedures for maintaining e∗ for resident storages. For the DTR-EqClass

heuristic, this included each storage visited whenever the Union-Find data structure
was traversed for each evicted component (which occurs mainly during merging and
when reading the compute cost). The DTR-Local heuristic does not need to maintain
any non-local metadata. For all heuristics, each heuristic evaluation counted as one
storage access.

results . As Figure 6 shows, the accesses made by each heuristic are generally
separated by at least an order of magnitude. This confirms our intuitions about the
runtime overhead of each heuristic, and supports the design of DTR-EqClass as a good
middle ground (both in terms of runtime and computational overhead). However,
these overhead figures could be improved with better-optimized implementations
of the heuristics, as our implementation recomputes heuristics often, even when it
may be possible to store the scores for tensors and maintain them in a sorted order.
(Reformulating staleness to avoid having to use the current time might help.) Using
persistent data structures that can be incrementally updated and maintain a sorted
order will make these heuristics much more efficient, though this would also increase
the complexity of the implementation.

6 conclusion

In this paper, we introduced simrd: a simulator for Dynamic Tensor Rematerialization.
simrd serves as an intermediate representation of DTR, at a level lower than DTR’s
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Figure 6: Total storages accesses incurred by heuristic evaluations and metadata maintenance,
compared across different memory ratios, for the three main hDTR variants.

core description but higher than a full implementation in a deep learning framework.
Consequently, simrd enabled rapid exploration and benchmarking of the algorithm
design space, while sufficiently modeling the real world constraints of a production
DL framework. By simulating a toy model used in the literature, we characterized
DTR’s asymptotic performance favorably, giving confidence in the approach. Then, we
simulated DTR’s performance on a variety of recorded, real-world model logs. This
enabled a comprehensive evaluation that cemented DTR as a valid approach, even
if only used statically. Finally, the abstractions and definitions produced during the
development of simrd helped guide the design of a functioning DTR prototype in
PyTorch [11], by serving as a lower-level specification that could be translated more
directly to implementation code.
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a additional figures

Figure 7: Memory trace for B = d2
√
ne, h = DTR-Full.

Figure 8: Memory trace for B = d2
√
ne, h = LRU.
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Figure 9: Memory trace for B = dlog2 ne, h = DTR-Full.

Figure 10: Memory trace for B = dlog2 ne, h = LRU.
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Figure 11: Results for fixed c = e∗, varying s and m.
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Figure 12: Results for fixed c = EqClass, varying s and m.
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Figure 13: Results for fixed c = local, varying s and m.

1.0

1.2

1.4

1.6

1.8

2.0
DenseNet-BC (64 batch, 100 layers) ResNet (32 batch, 32 layers) LSTM (32 batch, 1x layers)

0.1 0.3 0.5 0.7 0.9

1.0

1.2

1.4

1.6

1.8

2.0
TreeLSTM (32 batch, default layers)

0.1 0.3 0.5 0.7 0.9

UNet (4 batch, default layers)

0.1 0.3 0.5 0.7 0.9

Unrolled-GAN (32 batch, default layers)

0.0 0.2 0.4 0.6 0.8 1.0

Memory Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pu
te

 O
ve

rh
ea

d 
(×

)

no cost, size, staleness no cost, size, no staleness no cost, no size, staleness no cost, no size, no staleness (random) Baseline

Figure 14: Results for fixed c = no, varying s and m.
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